DeepMind y Alphabet: cuando el mercado te trae sin cuidado

IMAGE: Deep Mind and Alphabet logos

DeepMind, la compañía dedicada al desarrollo de inteligencia artificial general fundada en 2010 por Demis Hassabis, Shane Legg y Mustafa Suleyman, y adquirida por Alphabet por $650 millones en 2014, ha publicado sus resultados económicos, y pone de manifiesto un problema derivado de la llamada «contabilidad creativa».

En principio, todo suena muy bien: DeepMind consigue tras bastantes años convertirse en rentable gracias a unos ingresos de $1,130 de dólares en 2020 que triplican los $361 millones que había obtenido en 2019, frente a unos gastos relativamente «contenidos» que tan solo se elevaron desde los $976 millones en 2019 hasta los $1,060 millones en 2020. Visto así, todo indica que hablamos de una compañía muy puntera que, tras años de fuerte inversión y pérdidas importantes, logra la rentabilidad gracias a unos ingresos fuertemente crecientes y a una relativa contención en sus gastos. Finalmente, Alphabet puede situar a DeepMind en el lugar destinado a las compañías que, dentro de su paraguas, generan ingresos. Después de todo, que las compañías en ámbitos punteros pasen en muchos casos largas temporadas invirtiendo e incurriendo en fuertes pérdidas es algo que nos suena perfectamente natural.

¿Cuál es el problema? Simplemente, que DeepMind es una compañía que no tiene más clientes que Alphabet, y que como tal, no comercializa producto alguno. La compañía trabaja en proyectos de reinforcement learning destinados a objetivos complejos, desde cuestiones como ganar a determinados juegos hasta calcular las estructuras tridimensionales que forman las proteínas cuando sus cadenas de aminoácidos se pliegan. Ese tipo de proyectos tienen por el momento una comercialización entre imposible y muy compleja, dado que son, fundamentalmente, casos genéricos de aplicación con la función, por un lado, de poner a prueba determinadas tecnologías, y por otra, de obtener una rentabilidad mediática. Esos ingresos, por tanto, es bastante probable que provengan exclusivamente de Alphabet mediante un mecanismo muy habitual en la contabilidad: los precios de transferencia. Según la compañía, de hecho, sus ingresos provienen de «un contrato de servicios con otra empresa del grupo para la prestación de servicios de investigación y desarrollo».

¿Algún problema con esto? Una compañía como Alphabet, con un pulmón de generación de ingresos y beneficios tan importante como Google, puede permitirse financiar proyectos a muy largo plazo como este, como de hecho financia algunos otros. Antes, este tipo de proyectos muy homologables a la investigación básica tendían a ser financiados mediante dinero público, pero con el crecimiento de algunas compañías, como las big tech, ha ido resultando cada vez más habitual que sean ellas las que lo hacen. La tendencia, de hecho, suele ser cada vez más que cuando el estado inyecta recursos en una compañía, se la someta a los controles pertinentes, y los recursos inyectados se condicionen además a la apertura posterior de las tecnologías o los resultados obtenidos.

En el ámbito del machine learning, sin embargo, surge un pequeño dilema: hablamos de un entorno muy competitivo, en el que factores como el acceso a talento investigador o directivo, a recursos de computación, a datos o a muchos otros factores resultan críticos. Y si examinamos las cuentas de DeepMind, encontramos no solo unos precios de transferencia que permiten situar los ingresos de la compañía en donde buenamente estimen oportuno, sino también transferencias de recursos de otro tipo, como el uso prácticamente ilimitado de la nube de Google, vitales en los procesos de la compañía, o la transferencia de los salarios o de la ocupación de determinados perfiles laborales.

¿Qué supone, dentro del ámbito del machine learning, que una compañía pueda operar de esa manera? Simplemente, una distorsión del mercado. Por un lado, puede parecer muy bueno que una compañía avance las fronteras del conocimiento y obtenga resultados inspiradores. Pero por otro, quiere decir también que otras compañías, que en circunstancias normales podrían competir en este ámbito y tendrían, por ejemplo, que pagar por el uso de sus recursos, que buscar clientes, o que delimitar cuidadosamente los proyectos a los que se dedica en función de su potencial económico, puede verse perjudicada y terminar considerando que es imposible competir en ese mercado en esas condiciones, lo que podría eventualmente redundar en un empobrecimiento de la oferta.

El mecanismo de defensa que la economía tiene para evitar que este tipo de situaciones perjudiquen a otros competidores es, únicamente, la legislación antimonopolio. No se trata de impedir que tengas éxito por ser grande y tener muchos recursos, sino de evitar que tu éxito perjudique a tus competidores y, en último término, a tu industria, dado que se suele reconocer que a medio y largo plazo, el mercado y sus mecanismos representan la mejor manera de aprovechar el potencial de desarrollo de una industria. Si el uso de precios de transferencia y de contabilidades creativas consigue que ese tipo de controles permanezcan completamente al margen, el resultado es una distorsión del mercado, y por tanto, por atractivo que nos pueda parecer que la investigación en un tema puntero progrese más rápidamente, podría terminar resultando contraproducente. De hecho, podría, incluso, terminar convirtiéndose en un problema si llega a generar culturas acomodaticias en las que los resultados pueden llegar a perder su importancia. O, como en el caso de Alphabet, que se condicionen a las veleidosas políticas de una compañía que, en muchísimos casos, ha apoyado o dejado de apoyar proyectos debido, simplemente, a razones que ni ellos mismos alcanzaban a comprender y que se encuadran dentro del término genérico de mismanagement.

A todos los efectos, trabajar en DeepMind debe parecerse a tener un cheque en blanco: los recursos que necesites los pone Alphabet, y al final del año, Alphabet se encarga de arbitrar los precios de transferencia para que tus cuentas salgan como a ellos más les interese. Sin más. ¿Es esto bueno? ¿Genera, a medio y largo plazo, más beneficios o más perjuicios para la sociedad? ¿Cómo intentar competir con una compañía así?


This article is also available in English on my Medium page, «DeepMind and Alphabet: who needs markets?«

7 comentarios

  • #001
    Gorki - 11 octubre 2021 - 18:15

    Eso mismo pasa en los grandes bancos, Voy a referirme a Banesto porque es el que conozco mejor pero puedo asegurar que el BBVA y el Santander funcionan igual.

    Estas entidades financieras tiene el control sobre cientos de compañías, de modo que las direcciones de estas compañías no son libres de contratar a quien quiere para un servicio. sino que tiene que contratar a una compañía del grupo, de modo que «todo quede en casa»

    Cuando una empres del Grupo Banesto precisaba soporte informático, se veía obligada a contratar los servicios de mi compañía, dedicada a la Consultoría Informática, que tampoco podía fijar un precio alto por los servicios que daba a una compañía del grupo.

    Se creaban con ello unas relaciones empresariales que a mi me recordaban las de las compañías en la antigua URRS, donde todas eran del Estado y los precios los indicaba un Plan Quinquenal mas o menos acertado.

    Consecuencia, nadie sabía realmente lo que le costaba obtener un producto/servicio y para tener una noción de la realidad, teníamos que ver cuales era los precios de la competencia. La otra consecuencia es que todo fue muy bien, hasta que todo se vino abajo, porque las compañías que tenían el producto vendido a precio tasado, no se esforzaban lo mas mínimo para mejorar la productividad.

  • #002
    Javier - 11 octubre 2021 - 18:16

    Mientras iba leyendo, me venía a la mente la palabra dumping. En el «mercado» de las IA, Alphabet termina ganando lo mínimo necesario que le pague su único cliente (su casa matriz) para permitirse ser «competitivo» y (de paso) como quién no quiere la cosa, eliminar posibles competidores.

    Sólo que, salvando las distancias, acá no hay productos ni exportaciones y está gente se hace trampas en el solitario…

  • #003
    menestro - 11 octubre 2021 - 21:07

    Si una empresa no vende a un mercado abierto, como por ejemplo los proveedores de Mercadona, ese mercado no se ve afectado.

    En todo caso, la competencia sería de los productos de Mercadona en el lineal con otros supermercados (que normalmente, también tienen acuerdos de distribución con sus proveedores)

    La forma de competir siempre ha sido la misma, desde que Google estaba en el Garaje y Jerry Yang partía la pana con Yahoo, o Amancio ortega vendía Batas al Corte Inglés;

    Ser mejores.

    (Pero eso tiene un coste añadido. Un management acertado.)

  • #004
    Rupert iMBA 2011 - 11 octubre 2021 - 21:35

    Lo de siempre. Si tienes una start up, Googel lo acabará haciendo mejor y gratis.

  • #005
    Jesús - 11 octubre 2021 - 23:39

    Es por eso que cualquier inversor debe usar siempre la información financiera consolidada del grupo (separada por tramos de negocio) y no los estados contables individuales de las sociedades dependientes que se vuelven bastante inútiles en estas situaciones por muchos párrafos que den a entender que tienen un único cliente y proviene del grupo.

  • #006
    Xaquín - 12 octubre 2021 - 16:21

    «No se trata de impedir que tengas éxito por ser grande y tener muchos recursos, sino de evitar que tu éxito perjudique a tus competidores…» (EDans).

    Nunca entenderé este mantra del capitalismo. Realmente la inecuación a que dá lugar el mercado no tiene puta solución, pero nos la tratan de hacer tragar como si estuviéramos en Primaria…

  • #007
    Ferran - 14 octubre 2021 - 14:37

    Miasmamanagement me parecería más adecuado como concepto.

Dejar un Comentario

Los comentarios están cerrados